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ABSTRACT
Orthonormal bases of isotropic vectors for inde¯nite square

matrices are proposed and solved. A necessary and su±cient
condition is that the matrix must have zero trace. A recursive
algorithm is presented for computer applications. The isotropic
vectors of 3£3 matrices are solved explicitly. Deviatoric stresses
in continuum mechanics, the existence of isotropic vectors (par-
ticularly in screw space), and sti®ness synthesis by springs are
shown to be related to the isotropic vector problem.

1 INTRODUCTION

Eigenvalue problems in mathematics, from linear alge-
bra to di®erential equations, almost always have physical
correspondences. They help explain complicated physical
phenomena in terms that make sense to the human mind.
In engineering, the concepts of principal stress, principal
strain, principal axes and moments of inertia, etc. are
among countless quantities that are derived from eigenvec-
tor problems with physical meanings.

In the analysis of sti®ness and compliance, the eigen-
value problems provide a deeper understanding of these
phenomena, especially using screw (spatial vector) algebra.
The ¯rst example came from the work of Ball [2], who ap-
plied the screw theory to study rigid body motion. He in-
vestigated a generalized eigenvalue problem for sti®ness, in-
volving an inde¯nite metric, which lead to screws called the
principal screws of the potential. Also he used the inde¯nite
metric to determine screws of principal pitch (i.e. station-
ary pitch) of a subspace. The use of an inde¯nite quadratic
form leads to the existence of isotropic vectors, i.e. vectors
that make the form vanish.

In this study, bases of isotropic vectors in a space are
1

determined for an inde¯nite form. Isotropic vectors are well
known, see Artin [1], Lingenberg [6]. The solution is applied
to the synthesis of sti®nesses using springs in [3]. It can also
be used to determine the zero and in¯nite pitch screws in
a screw subspace. Further, the three dimensional case is
explicitly solved and is physically explained using the usual
stress tensor concept of continuum mechanics. The isotropic
vector problem is posed as a general type of eigenvector
problem.

The most signi¯cant contributions of this paper are the
solution of orthonormal bases composed of isotropic vectors
that span a space and a recursive algorithm for computation
of the bases.

2 PRELIMINARIES

Let V be a ¯nite dimensional vector space and
dim(V ) = n. Let the standard Euclidean norm be de¯ned
on V such that for any ~v 2 V , ~vT~v ¸ 0 is the square length
of the vector ~v. Any non-zero ~u such that ~uT~u = 1 is called
a unit vector. Any two unit vectors ~u1 and ~u2 are said to
be parallel if ~uT

1 ~u2 = 1 and orthogonal (or perpendicular,
reciprocal, etc.) if ~uT

1 ~u2 = 0.

The action of an n £ n square matrix A (a linear op-
erator) on a vector, A~v, is composed of two parts: 1) a
rotation and 2) a scaling. Rotation is understood in the
sense of length invariance. For example, orthogonal matri-
ces de¯ned by UUT = I only perform rotations.

An eigenvalue problem on V is given as

A~u = ¸~u (1)
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Figure 1. Comparison of the eigenvector and isotropic vector problems.

where ~u 2 V , A is a square matrix, and ¸ is a scalar. The
eigenvalue problem (1) is about the existence of a vector
~u which is transformed into a parallel vector ¸~u. In other
words, ~u is scaled by A, but not rotated. Such vectors ~u
and scalars ¸ are the eigenvectors and eigenvalues of A.
It is well known that the eigenvectors, with the constraint
~uT ~u = 1, make the quadratic form ~uTA~u stationary. For
a more detailed analysis of eigenvector problem and associ-
ated matrix methods see, for example, Horn and Johnson
[5], Pease [7].

In the proposed isotropic vector problem, a non-zero
vector is scaled and rotated to an orthogonal direction. Fig-
ure 1 illustrates the eigenvector and isotropic vector prob-
lems geometrically.

3 THE ISOTROPIC VECTOR PROBLEM

De¯nition 1. For a square matrix A, any vector ~u satisfying

A~u = ~w ~uT ~w = 0 (2)

is called an isotropic vector of A.

The following lemmas follow directly from (2).

Lemma 2. A vector ~u is an isotropic vector of A if and only
if ~uTA~u = 0.

Considering the quadratic form induced by A as a scalar
valued vector function, the eigenvectors are the stationary
points and the isotropic vectors are the zero locus.

Lemma 3. The isotropic vectors of a matrix A are identical
to those of its symmetric part.

Proof. This follows from ~uTA~u = ~uTAsym~u + ~uTAskew~u =
~uTAsym~u.¦
2

This is an interesting di®erence between the eigenvector
and the isotropic vector problems, indicating that it is suf-
¯cient to restrict the analysis to symmetric matrices only.
So, unless otherwise is noted, A is assumed to be symmetric
throughout.

4 EXISTENCE OF ISOTROPIC VECTORS

For any matrix A, if ~v 2 N (A), where N (A) is the null
space of A, then A~v = ~0 by de¯nition, thus ~vTA~v = ~0. So,
any vector in N (A) is an isotropic vector. Such isotropic
vectors are considered trivial. The following theorem gives
the condition for the existence of non-trivial isotropic vec-
tors.

Theorem 4. A has non-trivial isotropic vectors if and only
if it is inde¯nite.

Proof. Let ~v be a non-trivial isotropic vector. Then,
~vTA~v = ~0, ~v =2 N (A) and, by de¯nition, A is inde¯nite.
Conversely, let A be an inde¯nite matrix with eigenval-
ues ¸i (i = 1; :::; n) such that ¸1 = max(¸i) > 0 and
¸n = min(¸i) < 0. Consider a vector ~v as a point of Rn.
Then, the quadratic form ~vTA~v is a continuous function
fromRn into R. It is well known that ~vT1 A~v1 > 0 > ~vTnA~vn,
where ~v1 and ~vn are the eigenvectors corresponding to ¸1
and ¸n. Consider any smooth curve ~»(t) from ~v1 to ~vn
parametrized by t. Then, ~vTA~v(t) is a continuous func-
tion of t along the curve. So, by mean value theorem,
~vTA~v(t) takes on every value in [~vTnA~vn;~v

T
1 A~v1]. Hence,

there exists a t0 such that ~vTA~v(t0) = 0 2 [~vTnA~vn; ~vT1 A~v1].
In particular, for all smooth curves restricted to the plane
formed by ~v1 and ~vn, the points on the curve represents
vectors which are simply the linear combinations of ~v1 and
~vn and, therefore, not in the null space of A. Then, the
points at which the quadratic form vanish give the non-
trivial isotropic vectors.¦

Let ~v1 and ~v2 be such that ~v
T
1 A~v1 > 0 > ~vT2 A~v2 and

consider all vectors in the plane formed by ~v1 and ~v2. These
can be given as ~v = a1~v1 + a2~v2. This plane contains the
origin and the quadratic form changes sign on it. Since ~v1
and ~v2 are not solutions to ~v

TA~v = 0 one can take ai 6= 0.
Also, the magnitude of ~v is insigni¯cant. Therefore, the
direction of ~v is completely characterized by ~v = ~v1 + a~v2.
Now, the quadratic equation becomes

~vTA~v = ~vT2 A~v2a
2 + 2~vT1 A~v2a+ ~v

T
1 A~v1 = 0 (3)

The discriminant of this equation is always positive since
(~vT2 A~v2)(~v

T
1 A~v1) < 0. As a result there exist two distinct

real solutions for a. Hence the following is proven.
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Theorem 5. If the quadratic form ~vT A~v changes sign on a
plane containing the origin then there exist two distinct lines
on which it vanishes. The directions of these lines give two
distinct isotropic vectors.

Corollary 6. For an inde¯nite matrix A, there exist in¯nitely
many distinct isotropic vectors if n > 2, and there exist
exactly two isotropic vectors if n = 2.

Proof. For n = 1, A cannot be inde¯nite. Therefore, n ¸ 2.
For n = 2, there exists only one plane through the ori-

gin. The quadratic form changes sign on this plane since
there are two lines on which it has opposite signs due to in-
de¯niteness. Then, by Theorem 5, there exists two isotropic
vectors.

For n > 2, there exist in¯nitely many planes through
the origin. Since A is inde¯nite, the quadratic form changes
sign on at least one plane, say ¼, spanned by two vectors
~v1 and ~v2. Let the quadratic form be positive for ~v1 and
negative for ~v2. Since n > 2, there exist vectors ~v0

2 which
are not in ¼. By continuity, there exists a ~v0

2 su±ciently
close to ~v2, such that the quadratic form is still negative at
~v0
2. Thus, ~v1 and ~v0

2 span a plane ¼0 containing the origin,
on which the quadratic form changes sign. In this way, one
obtains in¯nitely many such planes. So, by Theorem 5,
there exist in¯nitely many isotropic vectors for n > 2.¦

From Corollary 6, every inde¯nite matrix of order n
has at least n isotropic vectors. So, let U = [~u1; :::; ~un] be
a square matrix formed from any n isotropic vectors, and
W = [~w1; :::; ~wn] be the corresponding vectors, ~uT

i ~wi = 0.
Then, by de¯nition, AU = W . Premultiplying both sides
by UT one gets

UT AU = UT W =

2
64

~uT
1
...

~uT
n

3
75 [~w1; :::; ~wn] (4)

=

2
64

~uT
1 ~w1 ¢ ¢ ¢ ~uT

1 ~wn
.
.
.

.
.
.

.

.

.

~uT
n ~w1 ¢ ¢ ¢ ~uT

n ~wn

3
75 (5)

But, the diagonal elements are ~uT
i ~wi = 0. Hence, the fol-

lowing theorem is proven.

Theorem 7. Every inde¯nite matrix is congruent to a matrix
whose diagonal elements are all zero.

A particular solution which is used in the next section
is the following.
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Theorem 8. If ¸1 > 0 and ¸2 < 0 are any two eigenvalues,
and, ~v1 and ~v2 are any two corresponding eigenvectors of a
symmetric A, then two isotropic vectors are given by

~u1;2 =
p

¡¸2~v1 §
p

¸1~v2 (6)

Proof. One only needs to use the well known properties of
eigenvectors of symmetric matrices, namely, ~vT

i A~vj = ±ij¸i.
Then

~uT
i A~ui =

³p
¡¸2~v1 §

p
¸1~v2

´T

A
³p

¡¸2~v1 §
p

¸1~v2

´

= ¡¸2~v
T
1 A~v1 + ¸1~v

T
2 A~v2

= ¡¸2¸1 + ¸1¸2 = 0 ¦ (7)

Corollary 9. The isotropic vectors of Theorem 8 are orthog-
onal (~uT

1 ~u2 = 0) if and only if ¸1 = ¡¸2.

Proof. By Theorem 8,

~uT
1 ~u2 =

³p
¡¸2~v1 +

p
¸1~v2

´T ³p
¡¸2~v1 ¡

p
¸1~v2

´

= ¡ (¸2 + ¸1) (8)

from which the corollary follows.¦

The following theorem shows that there always exists a
complete basis of isotropic vectors for every inde¯nite ma-
trix.

Theorem 10. There exists n linearly independent isotropic
vectors for any inde¯nite matrix A of order n.

Proof. Any vector in the null space of A is an isotropic
vector. So, if r = rank(A) then there always exist n ¡ r
isotropic vectors spanning the null space. Therefore, it is
su±cient to prove the theorem for the r dimensional sub-
space spanned by the eigenvectors belonging to non-zero
eigenvalues. Proof is obtained by induction. Let ¸i and ~vi

be the eigenvalues and eigenvectors. Among the r eigenval-
ues there exists at least one pair of eigenvalues with opposite
signs due to the inde¯niteness. So, there always exists at
least q 6 r eigenvalues with mixed signs.

1. Assume that there exists a q dimensional subspace
spanned by q eigenvectors f~vi; i = 1; :::; qg correspond-
ing to eigenvalues with mixed signs, which is also
spanned by q isotropic vectors f~ui; i = 1; :::; qg.
Copyright c° 1998 by ASME



2. Then, consider any of the remaining r ¡ q eigenvectors,
say ~vq+1. Regardless of the sign of ¸q+1, there exists an
eigenvalue with an opposite sign in the original set of
q eigenvalues, say ¸1. Then, by Theorem 8, the plane
spanned by ~v1 and ~vq+1 contains two distinct isotropic
vectors which are not in the space spanned by f~vi; i =
1; :::; qg, or f~ui; i = 1; :::; qg. Therefore, using either of
these isotropic vectors, say ~uq+1, one obtains a linearly
independent set f~ui; i = 1; :::; q + 1g of q + 1 isotropic
vectors which span the subspace spanned by f~vi; i =
1; :::; q + 1g.

3. Finally, since the assumption is valid for q = 2, Theo-
rem 8, it is valid for any q.

The theorem is completed by also adding any n ¡ r
linearly independent null space vectors.¦

5 ORTHONORMAL SETS OF ISOTROPIC VECTORS

As an analogy with the eigenvalue problem, one may
ask whether there can be n mutually orthogonal isotropic
vectors of a matrix. Assume there exists such a set of
isotropic vectors. Let U = [~ui] be an orthogonal ma-
trix formed from these n elements. Then, by Theorem
7, © = UT AU is a matrix with zero diagonal, and there-
fore zero trace. However, since U is orthogonal, UT U = I .
Therefore,

0 = trace(©) = trace(UT AU) (9)

= trace(UT UA) = trace(A) (10)

This gives the following necessary condition.

Theorem 11. If a matrix A of order n has an orthogonal set
of n isotropic vectors then trace(A) = 0.

Note that, if a matrix has n mutually orthogonal
isotropic vectors then UT AU is an orthogonal transforma-
tion of A. In a basis formed by these vectors, A has zero
diagonals. This result is complementary to case of the eigen-
vector problem where a symmetric matrix becomes diago-
nal when expressed in an orthogonal basis comprised of its
eigenvectors.

Corollary 6 that was stated for inde¯nite matrices ap-
plies to zero traces matrices after a slight modi¯cation.

Corollary 12. A matrix A, such that trace(A) = 0, has in-
¯nitely many distinct isotropic vectors if n > 2, or, n = 2
and A = 0. It has exactly one and two isotropic vectors for
n = 1 and n = 2 (A 6= 0), respectively.

Proof. A zero trace matrix A is either zero or inde¯nite. If
n = 1 then A = 0 and there exists a unique isotropic vector.
4

If n > 1 and A = 0 then there exist in¯nitely many distinct
isotropic vectors. If A is inde¯nite then Corollary 6 applies.
This proves the corollary.¦

It is desired to determine if a zero trace matrix A can
have a complete orthogonal set of isotropic vectors. This is
investigated below by using the separate cases identi¯ed in
Corollary 12.

For A = 0, any orthonormal set of n vectors is an ortho-
normal set of isotropic vectors. So, A = 0 cases are trivial
for all n.

For n = 1, A = 0. Therefore, the solution is trivial.
For n = 2 and A 6= 0, there exists only two distinct

isotropic vectors, Corollary 12. However, trace(A) = ¸1 +
¸2 = 0 and the isotropic vectors are orthogonal by Corollary
9.

Only the cases with n > 2 (A 6= 0) are left to consider.
By Corollary 12, there exist in¯nitely many isotropic vectors
in this case. Given an inde¯nite matrix, one can always ¯nd
an isotropic vector by using Theorem 8. The question is to
¯nd another that is orthogonal to the ¯rst when n > 2. If
a suitable method is developed to do this, then it can be
repeatedly applied to ¯nd a series of orthogonal isotropic
vectors. The process should stop naturally when n such
vectors are obtained. The following discussion and theorems
present a recursive algorithm that generates an orthonormal
set of isotropic vectors.

For eigenvalue problems, there exists a method that
sequentially and recursively generates the eigenvalues and
corresponding eigenvectors. Let A be a symmetric matrix.
A can be assumed to be positive de¯nite. If it is not, one can
always perform a shifting of the eigenvalues by A0 = A+kI,
where k > jmin(¸i)j. The matrices A and A0 have the same
eigenvectors. Their eigenvalues are related by ¸0

i = ¸i+k, so
that A0 is positive de¯nite. Let the eigenvalues be ordered
such that ¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸n.

Many numerical procedures, if used without modi¯ca-
tion, usually fail to ¯nd all eigenvalues, even if they are used
with di®erent initial guesses. A method used to overcome
this di±culty is based on the fact that, for any symmetric
positive de¯nite matrix A, the matrix A¡¸i~vi~v

T
i , where ¸i

is any eigenvalue with the corresponding eigenvector ~vi, re-
tains all the eigenvalues of A except ¸i which is replaced by
zero. The eigenvectors are all identical. This is sometimes
called de°ating a matrix. So, if ¸n and ~vn is found by any
means, then one constructs A2 = A ¡ ¸n~vn~vT

n . Then, one
performs an orthogonal transformation such that ~vn is one

of the standard basis vectors. In this system, A2 =

·
0 ~0T

~0 A¤
2

¸
,

where A¤
2 is an (n ¡ 1) £ (n ¡ 1) matrix whose eigenvalues

are ¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸n¡1. So, by applying a numerical pro-
cedure, one ¯nds ¸n¡1 and ~v¤

n¡1. Repeating the procedure
Copyright c° 1998 by ASME



in this way, one determines all eigenvalues and eigenvectors.
It is this method that inspires the following theorem.

Theorem 13. If ~u is a unit isotropic vector of A,
trace(A) = 0, A~u = ~w, then there exists a symmetric matrix
A¤ given by

A¤ = A ¡ ~w~uT ¡ ~u~wT (11)

such that

1. trace(A¤) = 0
2. ~u is in the null space of A¤.
3. For n > 1, A and A¤ have common isotropic vectors

orthogonal to ~u. For n = 1, A = A¤ = 0.

Proof. (1) For any two vectors ~a and ~b, trace(~a~bT ) = ~aT~b.
Then, by using trace(A) = 0 and ~wT~u = 0 in (11),

trace(A¤) = trace(A) ¡ trace
¡
~w~uT + ~u~wT

¢

= 0 ¡ ~uT ~w ¡ ~wT ~u = 0 (12)

(2) Next, by multiplying (11) by ~u, and, using ~uT ~u = 1
and ~wT ~u = 0, one gets

A¤~u =
£
A ¡ ~w~uT ¡ ~u~wT

¤
~u = A~u ¡ ~w = ~0 (13)

(3) Finally, if ~u0 is orthogonal to ~u then, from (11),
~u0T A¤~u0 = ~u0T A~u0. So, the quadratic forms of A and
A¤ have identical values in the subspace orthogonal to ~u.
Therefore, if ~u0 is an isotropic vector of A¤ orthogonal to ~u
then it is also an isotropic vector of A, and vice versa.¦
Corollary 14. For any zero trace symmetric matrix A, there
exists a ¯nite sequence of zero trace symmetric matrices,
A = A1;A2; :::;An = 0, recursively given by

Ai+1 = Ai ¡ ~ui ~w
T
i ¡ ~wi~u

T
i (14)

where ~ui is an isotropic vector of Ai, Ai~ui = ~wi, such that

1. Ai~uj = ~0; for all j < i.
2. f~uig is an orthonormal set.
3. ~ui is an isotropic vector of all Aj , j · i.

Proof. If n = 1 then A1 = 0 and the sequence is determined.
Statements of the theorem are trivially true. If n = 2,
then the two orthogonal isotropic vectors of A1 are given by
Corollary 9. Then, A2 has zero trace and a zero eigenvalue,
that is A2 = 0 which ends the sequence.

So, assume n > 2. A proof by induction is used. As-
sume that (1), (2) and (3) are true for some i. Then,
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1. for j < i + 1

Ai+1~uj = Ai~uj ¡ ~ui ~w
T
i ~uj ¡ ~wi~u

T
i ~uj (15)

=

½
Ai~ui ¡ ~wi = ~0 j = i

¡~ui ~wT
i ~uj = ¡~ui~uT

i (Ai~uj) = ~0 j < i

which proves that Ai+1~uj = ~0 for all j < i + 1. This
means that all ~uj , j < i + 1, are in the null space of
Ai+1.

2. By Theorem 13, an isotropic vector of Ai+1, ~ui+1, ex-
ists which is not in the subspace spanned by f~uig. So,
ff~uig ; ~ui+1g is an orthogonal set.

3. Finally, by applying Theorem 13 again, one concludes
that ~ui+1 is an isotropic vector of Aj for all j · i + 1.¦
This corollary proves that the zero trace condition is

su±cient for a symmetric matrix to have n orthonormal
isotropic vectors. Combining with Theorem 11, the follow-
ing main result of this section yields,

Corollary 15. A matrix A of order n has a complete ortho-
normal set of n isotropic vectors if and only if trace(A) = 0.

Corollary 16. Any matrix A of order n is orthogonally con-
gruent to a matrix with identical diagonal elements.

Proof. For any A, A0 = A ¡ 1
n
trace(A)I is a zero trace

matrix. By Corollary 15, A0 is orthogonally congruent to a
matrix © with zero diagonals, i.e. UT A0U = ©; UT U = I.
Therefore,

UT AU = UT A0U +
1

n
trace(A)UT IU (16)

= © +
1

n
trace(A)I (17)

which is a matrix with all diagonal entries equal to
1
n
trace(A).¦

Corollary 14 provides a recursive method for the con-
struction of an orthonormal set of n isotropic vectors of
arbitrary zero trace matrices. The following is a working
algorithm that utilizes Theorem 8.

1. Read n £ n matrix M
2. If trace(M) 6= 0 Stop. No solution
3. Symmetric part: A = 1

2 (M + MT )
4. Initialize: U = N (A)
5. Loop: while A 6= 0,
6. ¸i =eigenvalues, ~vi =eigenvectors of A
7. ¸p = max(¸i); ¸m = min(¸i)
8. ~u = Normalize

£p¡¸m~vp +
p

¸p~vm

¤
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9. Concatenate U = [U : ~u]
10. ~w = A~u
11. A = A ¡ ~w~uT ¡ ~u~wT

12. If ¡¸m = ¸p Then,
13. ~u = Normalize

£p¡¸m~vp ¡
p

¸p~vm

¤

14. Concatenate U = [U : ~u]
15. ~w = A~u
16. A = A ¡ ~w~uT ¡ ~u~wT

17. End If
18. A = 1

2(A + AT )
19. End Loop

The above algorithm has been tested numerically, us-
ing MATLAB, and yielded good results. The second state-
ment from the bottom seems to be necessary for numerical
stability. Note that whenever min(¸i) = ¡ max(¸i), both
isotropic vectors predicted by Theorem 8 are used since
they are already orthogonal in that case, Corollary 9. But,
the actual reason is di®erent. In general, the recursion in
Corollary 14 gives rank(Ai+1) = rank(Ai) ¡ 1. However,
for any two eigenvalues with equal magnitudes and oppo-
site signs, any of the isotropic vectors of Theorem 8 makes
rank(A ¡ ~w1~uT

1 ¡ ~u1 ~wT
1 ) = rank(A) ¡ 2. Proof of this fact

is not di±cult, but omitted here. Then, one can also show
that the other vector predicted by Theorem 8, ~u2 ? ~u1, is
also in the null space of the new matrix. Since the algo-
rithm is basically a recursion based on the column spaces of
current matrices, ~u2 must be added to the set or, otherwise,
the algorithm returns a de¯cient set.

5.1 Multitude of Solutions

It was shown earlier that a trace zero matrix has in¯-
nitely many isotropic vectors if n > 2, or, n = 2 and A = 0.
So, a natural question is about the multitude of solutions
to the orthonormal set problem. Note that if there exists
such a set then,

UT AU = © =

2
64

0 ² ²
² . . . ²
² ² 0

3
75 (18)

An n£n orthogonal matrix has 1
2
n(n¡ 1) independent

parameters. Since only the diagonals are to be satis¯ed, the
above matrix equation is equivalent to n scalar quadratic
equations in terms of the parameters of U . However, due to
the trace condition one of these equations is dependent on
others, leaving (n ¡ 1) equations in 1

2
n(n ¡ 1) parameters.

This gives a net of 1
2
n(n ¡ 1) ¡ (n ¡ 1) = 1

2
(n ¡ 1)(n ¡

2) free parameters in general. For n = 1; 2 this gives 0
free parameters, meaning ¯nitely many solutions as shown
6

earlier (n = 2; A = 0 is a degenerate case). For n = 3 there
is 1

2
(3¡ 1)(3¡ 2) = 1 free parameter. This is demonstrated

in the next section.

5.2 Closed Form Solutions for 3D

In this section, the orthogonal sets of isotropic vectors
of 3 £ 3 matrices are found explicitly, i.e. without using
the recursive algorithm presented earlier. To do this, one
uses the well known fact that for orthogonal transforma-
tions such as UT AU = ©, A and © must have the same
characteristic equation. In three dimensions, the character-
istic equation is

det (A ¡ ¸I) = det (© ¡ ¸I) = ¸3¡I1¸
2+I2¸¡I3 = 0 (19)

whose solutions ¸i are the eigenvalues of A and ©. The
coe±cients Ii are called the invariants. By expressing A
in diagonal form, which does not a®ect the invariants, one
shows that

I1 = ¸1 + ¸2 + ¸3 = trace(A) = 0 (20)

I2 = ¸1¸2 + ¸2¸3 + ¸3¸1 (21)

I3 = ¸1¸2¸3 = det(A) (22)

But, the form of © is already known to be

© =

2
4

0 a b
a 0 c
b c 0

3
5 (23)

which gives the invariants as

I1 = 0 (24)

I2 = ¡ ¡
a2 + b2 + c2

¢
(25)

I3 = 2abc (26)

Given A, Ii can be calculated. Therefore, any solution
© must satisfy (25) and (26) in terms of unknowns a; b; c.

In abc coordinates, (25) represents a sphere. Since I1 =
0, one easily shows by I2

1 = 0 that I2 · 0 which is necessary
and su±cient condition for the sphere to have real points.
For I2 = 0 and real a; b; c, the solution is trivial since a =
b = c = 0, and both matrices must vanish. So, assume
I2 < 0. With this assumption, A can have at most one zero
eigenvalue. Let ¸i be ordered so that ¸1 ¸ ¸2 ¸ ¸3.

Equation (26), on the other hand, is a third order sur-
face that has four disconnected components if I3 6= 0. This
Copyright c° 1998 by ASME



a
b

c

Φ = 
0 a b
a 0 c
b c 0

Figure 2. Solutions to the isotropic vector problem in 3-dimensions for the

degenerate case: det(A) = 0. The three circles are of the same radius and

centered at the origin of abc-space. Each circle is in a distinct coordinate

plane.

is because if fa0; b0; c0g is a point on the third order sur-
face then so is any triplet obtained by reversing the signs
of any two entries, such as f¡a0; ¡b0; c0g, giving a total of
four points, each located in a distinct octant. These com-
ponents are disconnected since it is not possible to trace
any connected curve from fa0; b0; c0g to, say, f¡a0; ¡b0; c0g
without making I3 6= 0.

The intersection of the sphere and the third order sur-
face is the solution set. Also, note that if fa0; b0; c0g is a
solution, so is any permutation of it.

If there exists a zero eigenvalue it must be ¸2 due to
ordering. In this case I3 = 0. Then at least one of a; b; c is
zero. Let c = 0. The others are obtained by permutations.
Then, (26) is identically satis¯ed, and (25) reduces to a2 +
b2 = ¡I2. This is a circle. So, all solutions fa; b; cg are
given by

p¡I2fcos µ; sin µ; 0g, where µ is arbitrary. Sign
reversals give the same circle and permutations give circles
in di®erent planes. A total of three circles exist. Figure 2
illustrates these circles.

Now, assume I3 6= 0. Treating c 6= 0 as a parameter
one gets two equations in a and b as

a2 + b2 = ¡I2 ¡ c2 (27)

2ab = I3=c (28)

By adding and subtracting these two equations from each
other one gets

(a + b)2 = I3=c ¡ I2 ¡ c2 = ®(c) (29)

(a ¡ b)2 = ¡I3=c ¡ I2 ¡ c2 = ¯(c) (30)
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For real solutions ®; ¯ ¸ 0. There are two solutions;

a =
§p

® § p
¯

2
(31)

b =
§p

® ¨ p
¯

2
(32)

which are real if and only if ®;¯ ¸ 0 (either upper or lower
signs are to be used for both a and b). For any given c these
indicate two points in two distinct components. It is left to
determine if there exist values of c for which ®;¯ ¸ 0.

The conditions ®; ¯ ¸ 0 can be multiplied by c to give

c®; c¯ ¸ 0 for c > 0 (33)

c®; c¯ · 0 for c < 0 (34)

De¯ne functions f¡ = c3 + I2c¡ I3 and f+ = c3 + I2c+ I3.
Then, by using (29) and (30), and reversing signs, give

f¨ = c3 + I2c ¨ I3

½
· 0 for c > 0
¸ 0 for c < 0

(35)

That is, the functions f+ and f¡ must be both negative
for positive c and both positive for negative c. Let f0 =
c3 + I2c. Then, f+ and f¡ are obtained by adding and
subtracting the same constant, which amounts to vertical
shifts of their graphs. Also, note that f¡ is simply the
characteristic polynomial. Therefore, it always has three
real roots. It is also not di±cult to show that if ¸i is a root
of f¡, then ¡¸i is a root of f+. Therefore, f+ has three
real roots, too. This is illustrated in Figure 3 for I3 > 0.
The solution set is denoted by thick line segments. I3 < 0
case is similar.

The solution regions for c are

c 2
½

[¸3; ¸2] [ [¡¸2;¡¸3] for I3 > 0
[¡¸1;¡¸2] [ [¸2; ¸1] for I3 < 0

¾
(36)

which has two disconnected regions in any case. Together
with the solutions of a and b, the total real solution space is
composed of four distinct components which are described
by one free parameter c, as claimed in the previous section.

Any solution (a; b; c) means at least one 3 £ 3 rotation
matrix U such that UT AU = ©. The columns of U give a
set of three orthonormal isotropic vectors of A.

Degenerate cases exist for double eigenvalues which re-
duces the solutions for © to a ¯nite number of isolated
Copyright c° 1998 by ASME



c
0

f 0
f +

f −

−λ1

λ2

−λ2 −λ3

λ3

I3 > 0

Figure 3. Solution regions for the parameter c. General case.

points, namely

·
if ¸3 = ¸2 and I3 > 0 or
if ¸1 = ¸2 and I3 < 0

¸
then c 2 f§¸2g (37)

In degenerate cases, a single point (a; b; c) corresponds to
in¯nitely many U . This is due to the existence of a double
eigenvalue. In other words, if U is a solution corresponding
to (a; b; c), then all RU are solutions, where R is a rotation
matrix about the axis corresponding to the single eigen-
value, which essentially keeps the matrices unchanged. This
de¯nes a 1-parameter family for U . As a result, although in
the degenerate case the solutions (a; b; c) are isolated points,
the space of corresponding U is still a 1-parameter family.

To see how U can be obtained from knowledge of A and
©, let RA be the rotation matrix formed by the eigenvectors
of A and R© be that for ©. Since both A and © have the
same eigenvalues then

RT
AARA = RT

©©R© = diag[¸1 ¸2 ¸3 ] (38)

Note that the eigenvalues must be ordered in the same way
when determining RA and R©. Then,

¡
R©RT

A

¢
A

¡
RART

©

¢
= © (39)

from which one concludes

U = RART
© (40)
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a
a

b b
c

c

Figure 4. A stress element with pure shear stresses. The normals of the

surfaces correspond to an orthonormal set of special eigenvectors. Shear values

are given by a; b; c which make up the matrix ©.

Note again that if there is a double eigenvalue in ¸i,
both RA and R© are non-unique and commonly de¯ned by
one parameter.

6 EXAMPLES

6.1 Continuum Mechanics

The 3-dimensional problem has a physical explanation
in the context of continuum mechanics. The stress tensor is
taken as an example. However, the results trivially extend
to strain tensor.

It is well known in continuum mechanics that the stress
tensor at any point of a material is given by a 3£3 symmet-
ric matrix. Any stress tensor ¾ can be decomposed into its
hydrostatic (1

3
trace(¾)I), and deviatoric (¾0) components.

This is identical to what is essentially done in Corollary 16.
The hydrostatic component is a pure normal stress state
of equal magnitude in every direction. ¾0 is considered to
correspond to pure shear loading. This is sensible since, by
the fact that trace(¾0) = 0, there exists a coordinate system
in which ¾0 has zero diagonals (i.e. no normal stresses) by
Corollary 16. Figure 4 illustrates such a state which is a
pure shear state. By the results of the previous and cur-
rent sections, these coordinates correspond to the isotropic
vectors of ¾0 and, in general, there exists in¯nitely many
of them described by one parameter. This is illustrated
in Figure 5 which shows the Mohr's circle representation
of three dimensional deviatoric stress. All possible stress
states are in the shaded region. The thick lines correspond
to distinct pure shear states which is in agreement with
what is claimed here, a one parameter family. If two princi-
pal stresses are equal then one circle degenerates to a point
and the other two coincide, giving only two such pure shear
states as claimed.
Copyright c° 1998 by ASME



6.2 Screw Theory and Isotropic Vectors

The space of screws, or spatial vectors, is a 6-
dimensional vector space on which there exists a transfor-
mation given by the group of rigid body motions. A screw
can be represented as a 6 £ 1 vector Ŝ = [~aT ; ~bT ]T , where

~a and ~b are 3-vectors. When ~a is a translation and ~b is a
rotation, the screw is called a twist. When ~a is a force and
~b is a moment, it is called a wrench. In this way, the twists
are represented in axis-coordinates and wrenches are repre-
sented in ray-coordinates, demonstrating the geometric du-
ality. For a screw in ray-coordinates, the rigid body trans-
formation applies as [(R~a)T ; (R~b + R(~a£~r))T ]T , where R
is a rotation and ~r is a translation. The pitch of a screw

in ray-coordinates is the scalar h = ~aT ~b
~aT~a

, which is invari-
ant under the rigid body transformations. Screws can have
¯nite or in¯nite pitches. For example, pure moments are
in¯nite pitch screws given by ~a = ~0. If h = 0, the screw
is called a zero pitch screw. Examples are pure forces and
rotations.

Any scalar measure on a vector space can be de¯ned by
a metric. There is no positive de¯nite metric in screw space
that is geometrically or physically meaningful. Instead, the
pitch is used as a scalar measure. If ~v is any vector then
a metric can be represented by a symmetric matrix G such
that ~vT G~v is a scalar measure. If G is de¯nite then any
non-zero vector has a non-zero scalar measure. If G is not
de¯nite, it is possible to have vectors whose scalar measure
is zero. Such vectors are called isotropic vectors. For screws

normal
stress

shear stress

σ1σ2σ3

Figure 5. Mohr's circle for 3-dimensional deviatoric stress.
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the matrix

¢̂ =

·
0 I
I 0

¸
(41)

where all submatrices are 3£3, de¯nes an inde¯nite metric.
This is related to the pitch since 1

2 ŜT ¢̂Ŝ = ~aT ~b. Conse-
quently, the zero and in¯nite pitch screws are the isotropic
vectors of the screw space under this metric.

A set of n · 6 independent screws spans a subspace
called an n-system of screws. An n-system may or may not
contain isotropic screws. Now, if V̂ = [Ŝ1; :::; Ŝn] is a matrix
of basis screws, then any other screw in the n-system can
be written as a linear combination Ŝ = V̂ ~u, where ~u is an
n £ 1 matrix of coe±cients. Then, any isotropic screw Ŝ
must satisfy

ŜT ¢̂Ŝ = ~uT (V̂ T ¢̂V̂ )~u = 0 (42)

The matrix A = V̂ T ¢̂V̂ is a symmetric matrix of order n.
Every solution ~u corresponds to an isotropic screw in the
n-system. But, from (42), ~u must be an isotropic vector
of A by de¯nition. So, by the existence theorem, such an
n-system of screws contains zero or in¯nite pitch screws if
and only if A is inde¯nite (non-trivial) or singular (trivial).
If A = 0 then all the screws in the system are isotropic.

6.3 Sti®ness Synthesis Problem

The spatial sti®ness of a rigid body suspended by an
elastic connection is represented by a 6£6 symmetric matrix
K̂, such that ±Ŵ = K̂ ±T̂ , where ±T̂ is an in¯nitesimal twist
and ±Ŵ is an in¯nitesimal wrench. Ciblak and Lipkin [3]
show that if K̂ has zero trace o®-diagonal 3£3 submatrices,
the synthesis of a stable or semi-stable sti®ness by springs
is reducible to the solutions of the equation

UT
³
P̂T ¢̂P̂

´
U = © (43)

where K̂ = P̂ P̂T , trace(P̂T ¢̂P̂ ) = 0 and © is a symmetric
matrix with zero diagonals. U is an orthogonal matrix.
Clearly, the columns of U are the isotropic vectors of A =
P̂T ¢̂P̂ . Since the previous section proved the existence
of ¯nitely or in¯nitely many orthonormal sets of isotropic
vectors for any given zero trace matrix (Corollary 15), any
sti®ness can be synthesized by springs if and only if its o®-
diagonals have zero trace.
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7 SUMMARY

The isotropic vector problem has complementary prop-
erties compared to the eigenvalue problem. Geometrically,
the former is about orthogonality whereas the latter is about
parallelism. From a functional point of view, the isotropic
vectors are the zeros and the eigenvectors are the stationary
points of the same quadratic form over a vector space.

Existence of the isotropic vectors basically requires in-
de¯niteness. On the other hand, for the existence of an or-
thonormal basis formed by isotropic vectors it is necessary
and su±cient that the matrix has zero trace. For a matrix
of order n, the space of all orthonormal bases formed by
isotropic vectors is 1

2
(n ¡ 1)(n ¡ 2) dimensional in general.

The recursive algorithm presented for the construction
of orthonormal bases formed by isotropic vectors is well
suited for computer applications. Explicit solution of the
three dimensional case is applicable to the synthesis of sti®-
ness using three line springs and three torsional springs [4].
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